\qquad
\qquad
\qquad

Platonic Solids Patterns

Count and record the number of faces (F), vertices (V), and edges (E) for each of the Platonic Solids. Then calculate the values for $F+V-E$. The Tetrahedron is already done.

Name	Figure	Faces (F)	Vertices (V)	Edges (E)	$F+V-E$
Tetrahedron		4	4	6	$\underline{4+4-6=2}$
Hexahedron (cube)					
Octahedron					
Dodecahedron					
Icosahedron					

Answer these questions on the back side of this paper.

1. What pattern did you observe in the last column?
2. Determine whether or not this relationship holds with an ordinary box (rectangular prism).
3. Explore this relationship with another polyhedron that has faces, vertices, and edges but is not a rectangular prism or Platonic Solid.
