Date:_____

Period:

Platonic Solids Patterns

Count and record the number of faces (F), vertices (V), and edges (E) for each of the Platonic Solids. Then calculate the values for F+V-E. The Tetrahedron is already done.

Name	Figure	Faces (F)	Vertices (V)	Edges (E)	F+V-E
Tetrahedron		4	4	6	4+4-6=2
Hexahedron (cube)					
Octahedron					
Dodecahedron					
Icosahedron					

Answer these questions on the back side of this paper.

- 1. What pattern did you observe in the last column?
- 2. Determine whether or not this relationship holds with an ordinary box (rectangular prism).
- 3. Explore this relationship with another polyhedron that has faces, vertices, and edges but is not a rectangular prism or Platonic Solid.

Name:_____